Goal-Oriented Local A Posteriori Error Estimators for H(div) Least-Squares Finite Element Methods
نویسندگان
چکیده
We propose a goal-oriented, local a posteriori error estimator for H(div) least-squares (LS) finite element methods. Our main interest is to develop an a posteriori error estimator for the flux approximation in a preassigned region of interest D ⊂ Ω. The estimator is obtained from the LS functional by scaling residuals with proper weight coefficients. The weight coefficients are given in terms of local mesh size hT and a function ωD depending on the distance to D. This new error estimator measures the pollution effect from the outside region of D and provides a basis for local refinement in order to efficiently approximate the solution in D. Numerical experiments show superior performances of our goal-oriented a posteriori estimators over the standard LS functional and global error estimators.
منابع مشابه
Chapter 6 A posteriori error estimates for finite element approximations 6 . 1 Introduction
The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached some state of maturity, as it is documented by a variety of monographs on this subject (cf., e.g., [1, 2, 3, 4, 5]). There are different concepts such as • residual type a posteriori error estimators, • hierarchical type a posteriori error estimators, • error estimators based on lo...
متن کاملGradient Recovery Techniques in One-dimensional Goal-oriented Problems
In this paper, we propose a new technique to evaluate a posteriori error estimate for goal-oriented problems using recovery techniques. In our technique, we replace the gradient in the goal-oriented error estimate by the recovered gradient obtained by the polynomial preserving recovery technique. Also, we present a new local re nement algorithm suitable to the proposed technique. Finally, the v...
متن کاملMeshfree First-order System Least Squares
We prove convergence for a meshfree first-order system least squares (FOSLS) partition of unity finite element method (PUFEM). Essentially, by virtue of the partition of unity, local approximation gives rise to global approximation in H(div) ∩ H(curl). The FOSLS formulation yields local a posteriori error estimates to guide the judicious allotment of new degrees of freedom to enrich the initial...
متن کاملA posteriori error estimate for the mixed finite element method
A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...
متن کاملA Posteriori Error Estimation for an Interior Penalty Type Method Employing $H(\mathrm{div})$ Elements for the Stokes Equations
Abstract. This paper establishes a posteriori error analysis for the Stokes equations discretized by an interior penalty type method using H (div) finite elements. The a posteriori error estimator is then employed for designing two grid refinement strategies: one is locally based and the other is globally based. The locally based refinement technique is believed to be able to capture local sing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 49 شماره
صفحات -
تاریخ انتشار 2011